Thermodynamic properties of crystalline phosphate Ba_{0.5}Zr₂(PO₄)₃ over the temperature range from $T \rightarrow 0$ to 610 K

V. I. Pet'kov · I. A. Shchelokov · A. V. Markin · N. N. Smirnova · M. V. Sukhanov

Received: 11 February 2010/Accepted: 31 May 2010/Published online: 16 June 2010 © Akadémiai Kiadó, Budapest, Hungary 2010

Abstract The temperature dependence of the heat capacity of crystalline barium zirconium phosphate $C_p^{o} = f(T)$ was measured over the temperature range 6–612 K. The experimental data obtained were used to calculate the standard thermodynamic functions $C_p^{o}(T)$, $H^{o}(T) - H^{o}(0)$, $S^{o}(T)$, $G^{o}(T) - H^{o}(0)$ over the temperature range from $T \rightarrow 0$ to 610 K and standard entropy of formation at 298.15 K. The data on the low-temperature ($6 \le T/K \le 50$) heat capacity were used to determine the fractal dimension of Ba_{0.5}Zr₂(PO₄)₃. Conclusions concerning the topology of the structure of phosphate were drawn. Thermodynamic properties of M_{0.5}Zr₂(PO₄)₃ (M = Ca, Sr, Ba) were compared.

Keywords Calorimetry · Heat capacity · Phosphate · Thermodynamic functions

Introduction

Phosphate $Ba_{0.5}Zr_2(PO_4)_3$ belongs to structural family of the mineral kosnarite $KZr_2(PO_4)_3$ [1, 2]. These phosphates possess high chemical, thermal and radiation stability, low thermal expansion, ability to include cations a different charge, and the size in crystal structure that allows designing hi-tech materials on their basis with demanded properties [3].

 $Ba_{0.5}Zr_2(PO_4)_3$ keeps stability at action of high and low temperatures, has low thermal expansion, forms wide

N. N. Smirnova · M. V. Sukhanov

Lobachevsky State University of Nizhni Novgorod, pr. Gagarina 23, 603950 Nizhni Novgorod, Russia e-mail: petkov@inbox.ru regions of solid state solutions with other substances of kosnarite family—it makes it perspective for use as a basis ceramics which properties can be purposefully regulated at the expense of composition change [3].

Earlier we and other authors studied the phase formation and thermodynamic properties of phosphates $ML_2(PO_4)_3$ (M = Li, Na, K, Rb, Cs, L = Ti, Zr, Hf) and $M_{0.5}L_2(PO_4)_3$ (M = Ca, Sr; L = Ti, Zr, Hf) phosphates with kosnarite structure [4–8]. In this study results of experimental studying of temperature dependence of a heat capacity of crystal compound $Ba_{0.5}Zr_2(PO_4)_3$ over the temperature range 6–612 K are presented, the standard thermodynamic functions $C_p^{\circ}(T)$, $H^{\circ}(T) - H^{\circ}(0)$, $S^{\circ}(T)$, $G^{\circ}(T) - H^{\circ}(0)$ over the temperature range from $T \rightarrow 0$ to 610 K and standard entropy of formation at 298.15 K are calculated. Thermodynamic properties of $M_{0.5}Zr_2(PO_4)_3$ (M = Ca, Sr, Ba) are compared.

Experimental

Sample characteristics

Phosphate $Ba_{0.5}Zr_2(PO_4)_3$ was prepared by the sol-gel method. The starting materials for its synthesis were $BaCl_2 \cdot 2H_2O$, $ZrOCl_2 \cdot 8H_2O$, and H_3PO_4 of kh. ch. (chemically pure) grade. Stoichiometric amounts of aqueous solutions of barium chloride and zirconium oxychloride (to prevent hydrolysis, zirconium oxychloride was dissolved in distilled water acidified with hydrochloric acid) were mixed under continuous stirring at room temperature. A solution of orthophosphoric acid, also taken in the amount corresponding to the stoichiometry of the product, was then slowly added under stirring. The gel formed was dried at 363 K and subjected to thermal treatment under the

V. I. Pet'kov (🖂) · I. A. Shchelokov · A. V. Markin ·

conditions of free access of air at 873, 1073, and 1373 K for no less than 24 h at each stage. Heating stages alternated with grinding.

The sample synthesized was a white polycrystalline powder. Its composition and structure were substantiated by X-ray diffraction, electron-probe analysis, and IR spectroscopy.

The X-ray powder pattern of the sample was recorded on a Shimadzu XRD-6000 diffractometer using filtered $\text{Cu}K_{\alpha}$ radiation. The set of interplanar distances was compared with the data reported in [2]. The X-ray pattern only contained reflections characteristic of $\text{Ba}_{0.5}Zr_2(\text{PO}_4)_3$. The cell parameters (space group $\text{R}\overline{3}$, a = 8.6468(6) Å, c = 23.9436(2) Å, V = 1550.35(1) Å³, Z = 6) were determined from the indexed diffractogram over the 2θ angle range 12° – 140° and refined by the method of least squares.

The chemical composition and homogeneity of the sample were controlled by X-ray spectral microanalysis using a CamScan MV-2300 scanning electron microscope equipped with a Link INCA ENERGY 200C energy dispersion detector. The compositions were calculated by the PAP correction method. Considering measurement errors $(\pm 2 \text{ at.\%})$, its composition corresponded to the Ba_{0.52(3)} Zr_{2.01(4)}Hf_{0.02(0)}P_{2.96(5)}O₁₂ formula.

The absorption spectrum of the sample prepared by the fine-dispersity film method on a KBr substrate was recorded on a Specord 75 IR spectrophotometer over the frequency range 1400–400 cm⁻¹. The positions and shapes of absorption bands were similar to those reported in [9] and typical of orthophosphates.

Apparatus and procedures for calorimetric measurements

The temperature dependence of the heat capacity C_{p}^{o} of the sample was measured over the temperature range 6-320 K on a BKT-3.07 thermophysical unit, which was a fully automated adiabatic vacuum calorimeter with discrete heating. The design of the calorimeter and the procedure for measurements were similar to those described in [10]. The reliability of calorimeter operation was checked by measuring the heat capacity of special-purity copper (OSCh-11-4 brand) and standard synthetic corundum and benzoic acid (K-2 brand). Calibration and test experiment results showed that the error in heat capacity measurements was no more than $\pm 2\%$ at temperatures from 6 to 15 K. The errors decreased to $\pm 0.5\%$ as the temperature increased to 40 K and were $\pm 0.2\%$ over the temperature range 40–340 K. The absolute error in temperature measurements was 5×10^{-3} K according to ITS-90. The calorimetric ampoule contained 0.7842 g of the investigated substance.

Measurement of a heat capacity of the sample of phosphate $Ba_{0.5}Zr_2(PO_4)_3$ over the temperature range 300-612 K carried out with use of differential scanning calorimeter DSC204F1 of manufacture of firm Netzsch Geratebau, Germany. The design of calorimeter DSC204F1 and a work technique are similar described in work [11]. Checking of reliability of work of a calorimeter carried out by means of standard calibration experiments on measurement of thermodynamic characteristics of fusion *n*-geptan, mercury, indium, tin, lead, bismuth, and zinc. As a result of calibrations, it was found that the equipment and a measurement technique allow to measure temperatures of phase transformations with a margin error ± 0.2 K, enthalpy of transitions— $\pm 1\%$. A heat capacity defined by standard technique Netzsch Software, the error of definition C_p^{o} , did not exceed $\pm 2.5\%$. Measurements spent at average speed of heating of an ampoule with substance of 5 K/min in argon atmosphere. The calorimetric ampoule contained 0.045 g of the investigated substance.

Results and discussion

Heat capacity

The heat capacity of crystalline Ba_{0.5}Zr₂(PO₄)₃ was studied over the temperature range 6–612 K (Table 1). Measurements on the adiabatic calorimeter gave 145 experimental values of C_p^o . The experimental values were averaged using power and semilogarithmic polynomials, which gave deviations of measurement results from the averaged $C_p^o = f(T)$ curve that did not exceed measurement errors.

All the experimental values and the averaging curve over the temperature range 6.2–610 K are shown in Fig. 1. We see that the heat capacity of Ba_{0.5}Zr₂(PO₄)₃ has no singularities and smoothly increases as the temperature grows. The curve kind $C_p^o = f(T)$ is typical of compounds with structure of kosnarite. Similar dependences $C_p^o = f(T)$ have been received by us earlier [7, 8] for Ca_{0.5}Zr₂(PO₄)₃ and Sr_{0.5}Zr₂(PO₄)₃ (Fig. 2). Absence of any polymorphic transformations on curves $C_p^o = f(T)$ in the studied area of temperatures is caused by stability of crystal phosphates.

We deemed it interesting to process low-temperature $(25 \le T/K \le 50)$ heat capacity data taking into account the multifractal character of the vibrational states of atoms and determine the fractal dimension, *D*, of the structure [12, 13] and receive value of fractal dimensions, *D*, proceeding from the equation:

$$\ln C_{\rm v} = \ln A + D \ln(T/\theta_{\rm max}) \tag{1}$$

where A is a constant for a particular solid, θ_{max} is the characteristic temperature, and D is the fractal dimension.

Table 1 Experimental data of molar heat capacity of $Ba_{0.5}Zr_2(PO_4)_3$, in J mol⁻¹ K⁻¹; M = 604.69 g mol⁻¹, $p^\circ = 0.1$ MPa

T/K

Series 1

6.26

6.50

6.64

6.75

6.85

6.92

6.98

7.04

7.08

7.09

7.25 7.46

7.73

8.10

8.41

8.72

9.04

9.69

10.37

11.06

11.63

12.47

13.56

14.62

15.66

16.68

17.69

18.75

19.68

21.43

23.79

26.14

28.50

30.87

33.26

35.67

38.08

40.32

42.56

44.99

47.43

49.87

52.31

54.76

57.21

59.66

62.11

Table 1	continued			
<i>T</i> /K				
64.57				
67.02				
69.47				
71.93				
74.39				
76.84				
79.15				
81.70				
84.22				
86.68				
89.14				
91.59				
Series 2				
84.17				
86.91				
89.87				
92.82				
95.30				
97.90				
100.64				
103.59				
100 07				

C°		
Сp	64.57	
	67.02	
0.361	69.47	
0.402	71.93	
0.429	74.39	
0.449	76.84	
0.470	79.15	
0.483	81.70	
0.495	84.22	
0.508	86.68	
0.517	89.14	
0.520	91.59	
0.554	Series 2	
0.606	84.17	
0.673	86.91	
0.773	89.87	
0.867	92.82	
0.968	95.30	
1.08	97.90	
1.52	100.64	
1.63	103.59	
2.00	106.07	
2.33	108.80	
2.77	109.51	
3.54	112.47	
4.35	115.43	
5.049	118.39	
5.852	121.36	
0.348	124.32	
7.005	127.28	
0.20	130.25	
9.39 11 /7	133.21	
1417	136.18	
14.12	139.15	
20.08	142.12	
20.98	145.11	
24.57	148.08	
20.07	151.06	
31.42	154.03	
37 55	156.93	
41 20	159.78	
44.88	162.40	
48 77	165.20	
+0.77 52 56	167.92	
56.64	170.90	
50.04 60.42	173.88	
64 20	176.86	
67.01	179.84	
07.91		

 $C_{\rm p}^{\rm o}$

71.60

75.30

78.84

82.52

86.50

90.55

94.54

98.90

103.1

107.0

110.4

114.1

103.1

107.2

111.7

115.7

119.0

122.3

125.6

129.1

131.8

135.1

135.9

139.4

143.1

146.3

149.6

152.9

156.3

159.9

163.5

166.8

170.2

173.6

176.8

179.8

182.9

186.0

188.7

191.4

194.0

196.2

198.8

201.6

204.3

207.0

209.5

Table 1 continued

Table 1 continued		Table 1 continued		
Т/К	$C_{\rm p}^{\rm o}$	<i>Т/</i> К	$C_{\rm p}^{\rm o}$	
182.82	211.5	314.36	307.5	
185.80	214.1	316.74	309.0	
188.78	216.4	319.39	310.9	
191.77	219.0	Series 3		
194.76	221.6	301.9	299	
197.74	223.8	304.4	301	
200.52	225.9	306.9	303	
203.26	228.0	309.4	304	
206.26	230.2	311.9	306	
209.02	232.4	314.4	307	
210.27	233.4	316.9	309	
212.50	234.9	319.4	311	
215.22	237.3	321.9	312	
217.97	239.4	324.4	313	
220.95	241.8	326.9	315	
223.92	244.3	329.4	316	
226.89	246.8	331.9	317	
229.66	249.1	334.4	319	
232.34	251.2	336.9	320	
235.29	253.4	339.4	321	
238.24	255.4	341.9	323	
241.18	257.3	344.4	324	
244.11	259.3	346.9	325	
247.04	261.0	349.4	327	
249.95	263.1	351.9	328	
252.85	265.5	354.4	329	
254.91	266.7	356.9	330	
257.51	268.4	359.4	331	
260.38	270.4	361.4	332	
263.25	272.3	364.4	333	
266.09	274.6	366.9	333	
268.92	276.5	369.4	334	
271.73	278.7	371.9	335	
274.52	280.6	374.4	335	
275.66	281.3	376.9	336	
278.16	282.8	379.4	337	
280.93	284.3	381.9	338	
283.69	286.5	384.4	339	
286.42	288.2	386.9	340	
289.12	289.9	389.4	340	
291.85	201.9	391.9	341	
294.69	291.9	394.4	342	
297.42	295.9	396.9	343	
300.13	293.9	399.4	345	
302.83	201.9	401 9	2//	
305.51	301.5	404.4	345	
308 19	302.1	406.9	345	
310.85	305.2	409.4	340	
510.05	505.5	-107. -	547	

Table 1 continued

Т/К	$C_{\rm p}^{\rm o}$
411.9	347
414.4	348
416.9	349
419.4	349
421.9	350
424.4	350
426.6	351
429.4	352
431.9	353
434.4	353
436.9	355
439.4	355
441.9	356
444.4	357
446.9	358
449.4	359
451.9	359
454.4	360
456.9	360
459.4	361
461.9	362
464.4	363
466.9	363
469.4	364
471.9	365
474.4	365
476.9	366
479.4	367
481.9	367
484.4	368
486.9	368
489.4	369
491.9	369
494.4	370
496.9	371
499.4	371
501.9	372
504.4	372
506.9	373
509.4	373
511.9	374
514.4	374
516.9	375
519.4	375
521.9	376
524.4	376
526.9	377
529.4	377

Table 1 continued		
T/K	Cp	
531.9	378	
534.4	378	
536.9	379	
539.4	379	
541.9	380	
544.4	381	
546.9	381	
549.4	382	
551.9	382	
554.4	383	
556.9	383	
559.4	383	
561.9	384	
564.4	384	
566.9	385	
569.4	385	
571.9	385	
574.4	386	
576.9	386	
579.4	386	
581.9	387	
584.4	387	
586.9	387	
589.4	387	
591.9	388	
594.4	388	
596.9	388	
599.4	389	
601.9	389	
604.4	389	
606.9	390	
609.4	390	
611.9	390	

The D value is an indirect characteristic of the topology of the structure and can be used to draw conclusions about he geometric characteristics of the structure of solids. For hain, layered, and three-dimensional structures, D = 1, 2,and 3, respectively.

We can, without the introduction of substantial errors, ssume that, at T < 50 K, C_p^o equals C_V . This assumption nd the corresponding experimental heat capacity data over he temperature range 25–50 K give D = 3 (with an ncertainty of $\pm 0.5\%$) for Ba_{0.5}Zr₂(PO₄)₃, which correponds to its framework structure. Note that this conclusion s in agreement with the structural data on Ba_{0.5}Zr₂(PO₄)₃ [2].

Fig. 1 Heat capacity of crystalline phosphate Ba_{0.5}Zr₂(PO₄)₃

Fig. 2 Heat capacity of phosphates $Ca_{0.5}Zr_2(PO_4)_3$ (1), $Sr_{0.5}Zr_2(PO_4)_3$ (2), $Ba_{0.5}Zr_2(PO_4)_3$ (3)

At T < 20 K and lower (to the temperature of the beginning of measurements), the heat capacity of Ba_{0.5}Zr₂(PO₄)₃ is described by the Debye heat capacity function:

$$C_{\rm p}^{\circ} = n\mathbf{D}(\theta_{\rm D}/T) \tag{2}$$

where **D**—a symbol of function of a heat capacity of Debye.

The characteristic Debye temperature $\theta_{\mathbf{D}} = 138.5 \text{ K}$ was found from the experimental values C_{p}^{o} over the temperature range 6–12 K at the number of degrees of freedom n = 6. The $\theta_{\mathbf{D}}$ value was calculated by (2) with an error of 0.6%, which did not exceed the error in measurements C_{p}^{o} over the temperature range specified.

Table 2 Fractal dimensions, *D*, and characteristic temperatures θ_{max}

Compound	Temperature range/K	D	$\theta_{\rm max}/{\rm K}$	$\delta^{ m a}$ /%
$Ca_{0.5}Zr_2(PO_4)_3^b$	7–12	3	112.8	1
	30-50	3	218.6	0.5
$Sr_{0.5}Zr_2(PO_4)_3^c$	7–12	3	113.5	0.5
	30–50	3	193.9	1.7
$Ba_{0.5}Zr_2(PO_4)_3$	6–12	3	138.5	0.6
	25–50	3	207.7	0.9

Number of degrees of freedom n = 6

^a Error in the fitting

^b Values of *D* and θ_{max} have been calculated using data from [8]

^c Values of *D* and θ_{max} have been taken from [7]

In Table 2 for comparison are resulted fractal dimensions and characteristic temperatures of Debye Ba_{0.5}Zr₂ (PO₄)₃ and studied by us earlier Ca_{0.5}Zr₂(PO₄)₃ and Sr_{0.5}Zr₂(PO₄)₃ [7, 8]. All compounds, judging by values of *D* and the data of structural analysis, have framework structure. The numerical values θ_{max} calculated for an identical interval of temperatures allow to do some conclusions about relative rigidity of frameworks of compared phosphates. Judging by values of their frameworks are close.

Thermodynamic functions

The standard thermodynamic functions of crystalline $Ba_{0.5}Zr_2(PO_4)_3$ (Table 3) were calculated after the extrapolation of the temperature dependence of its heat capacity from 6 to 0 K using the Debye heat capacity function for solids (Eq. 2) with the parameters given above. It was assumed that Eq. 2 reproduced the C_p^o values at T < 6 K with the error specified above.

The $H^{\circ}(T) - H^{\circ}(0)$ enthalpy and $S^{\circ}(T)$ entropy of the compound were calculated by the numerical integration of the $C_{\rm p}^{\rm o} = f(T)$ and $C_{\rm p}^{\rm o} = f(\ln T)$ dependences, respectively, and the $[G^{\circ}(T) - H^{\circ}(0)]$ Gibbs function, using the enthalpies and entropies of the compound at the corresponding temperatures. It was assumed that function calculation errors made no noticeable contribution to the accuracy of function determination, that is, did not exceed the heat capacity measurement errors specified above.

The absolute entropies of the compound under study S° (Ba_{0.5}Zr₂(PO₄)₃, κ , 298.15) = 307.1 ± 1.0 J/(mol K) (Table 3) and the corresponding simple substances S° (Ba, cr, 298.15) = 62.48, S° (Zr, cr, 298.15) = 38.994 ± 0.167, S° (P, cr, 298.15) = 41.09 ± 0.25, S° (O₂, g, 298.15) = 205.152 ± 0.005 J/(mol K) taken from [14, 15] were used to calculate the standard entropy of formation

Table 3 Standard thermodynamic functions of $Ba_{0.5}Zr_2(PO_4)_3$; $M = 604.69 \text{ g mol}^{-1}$

<i>T/</i> K	$C_{\rm p}^{\rm o}/$	$H^{\circ}(T)$ –	$S^{\circ}(T)/$	$-[G^{\circ}(T) -$
	$J \text{ mol}^{-1}$	$H^{\circ}(0)/$	$J \text{ mol}^{-1}$	$H^{\circ}(0)]/$
	K ⁻¹	kJ mol ⁻¹	K ⁻¹	kJ mol ⁻¹
5	0.183	0.000200	0.0611	0.0000760
10	1.46	0.00360	0.486	0.00122
15	4.578	0.01830	1.618	0.005987
20	8.246	0.05030	3.443	0.01859
25	12.78	0.1022	5.738	0.04121
30	19.63	0.1824	8.637	0.07672
40	34.05	0.4523	16.31	0.2001
50	48.93	0.8651	25.46	0.4077
60	64.78	1.435	35.80	0.7132
70	79.63	2.157	46.90	1.126
80	95.96	3.033	58.57	1.653
90	111.9	4.075	70.83	2.300
100	124.8	5.260	83.30	3.070
110	136.5	6.567	95.75	3.966
120	148.1	7.990	108.1	4.985
130	159.7	9.529	120.4	6.128
140	171.1	11.18	132.7	7.393
150	181.8	12.95	144.9	8.781
160	191.7	14.82	156.9	10.29
170	200.8	16.78	168.8	11.92
180	209.3	18.83	180.5	13.67
190	217.6	20.97	192.1	15.53
200	225.4	23.18	203.4	17.51
210	233.1	25.47	214.6	19.60
220	241.3	27.84	225.7	21.80
230	249.1	30.30	236.6	24.11
240	256.5	32.83	247.3	26.53
250	263.4	35.42	257.9	29.06
260	270.3	38.09	268.4	31.69
270	277.1	40.83	278.7	34.42
280	284.0	43.64	288.9	37.26
290	290.8	46.51	299.0	40.20
298.15	296.4	48.90	307.1	42.67
300	297.6	49.45	309.0	43.24
310	304.5	52.46	318.8	46.38
320	310.6	55.54	328.6	49.62
330	316	58.7	338	53.0
340	322	61.9	348	56.4
350	327	65.1	357	59.9
360	331	68.4	366	63.5
370	334	71.7	376	67.2
380	337	75.1	385	71.0
390	340	78.5	393	74.9
400	344	81.9	402	78.9
410	346	85.3	411	83.0
420	349	88.8	419	87.1
-			-	

Table 3 continued					
<i>T/</i> K	$C_p^{o}/J mol^{-1} K^{-1}$	$H^{\circ}(T) - H^{\circ}(0)/kJ \text{ mol}^{-1}$	$S^{\circ}(T)/$ J mol ⁻¹ K ⁻¹	$-[G^{\circ}(T) - H^{\circ}(0)]/$ kJ mol ⁻¹	
430	353	92.3	427	91.3	
440	356	95.9	435	95.7	
450	359	99.4	443	100	
460	361	103	451	105	
470	364	107	459	109	
480	367	110	467	114	
490	369	114	474	118	
500	371	118	482	123	
510	373	121	489	128	
520	376	125	496	133	
530	378	129	504	138	
540	380	133	511	143	
550	382	137	518	148	
560	383	140	525	153	
570	385	144	531	159	
580	386	148	538	164	
590	388	152	545	169	
600	389	156	551	175	
610	390	160	558	180	

of Ba_{0.5}Zr₂(PO₄)₃, $\Delta_f S^\circ$ (Ba_{0.5}Zr₂(PO₄)₃, κ , 298.15) = -1156 ± 2 J/(mol K). This value corresponds to the reaction:

 $0.5Ba(cr) + 2Zr(cr) + 3P(cr, white) + 6O_2(g)$ = $Ba_{0.5}Zr_2(PO_4)_3(cr)$

To summarize, we for the first time studied the isobaric heat capacity of crystalline phosphate Ba_{0.5}Zr₂(PO₄)₃ over the temperature range 6–612 K, calculated its thermodynamic functions $C_p^o(T)$, $H^o(T) - H^o(0)$, $S^o(T)$, and $G^o(T) - H^o(0)$ over the temperature range 0–610 K, and determined the standard entropy of its formation from simple substances at 298.15 K. By data of low-temperature heat capacities, fractal dimension *D* is calculated and the type of topology of structure Ba_{0.5}Zr₂(PO₄)₃ is defined.

Acknowledgements This study was financially supported by the Russian Foundation for Basic Research (project no. 08-03-00082).

References

- 1. Brownfield ME, Foord EE, Sutley SJ, Botinelly T. Kosnarite, KZr₂(PO₄)₃ a new mineral from Mount Mica and Black Mountain, Oxford County, Maine. Am Mineral. 1993;78:653–6.
- Gobechiya ER, Kabalov YuK, Pet'kov VI, Sukhanov MV. Crystal structures of double cesium zirconium and barium zirconium orthophosphates. Kristallografiya. 2004;49:829–34.
- Pet'kov VI, Orlova AI. Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family. Inorg Mater. 2003;39:1013–23.

- Pet'kov VI, Asabina EA, Markin AV, Smirnova NN. Synthesis, characterization and thermodynamic data of compounds with NZP structure. J Therm Anal Calorim. 2008;91:155–61.
- 5. Ahmadu U, Musa OA, Jonah SA, Rabiu N. Synthesis and thermal characterization of NZP compounds $Na_{1-x}Li_xZr_2(PO_4)_3$ (x = 0.00-0.75). J Therm Anal Calorim. 2010; doi:10.1007/ s10973-010-0679-y.
- Krishnaiah MV, Joseph J, Seenivasan G, et al. Calorimetric study of selected NZP-type of ceramic materials. J Alloys Compd. 2003;351:212–6.
- 7. Pet'kov VI, Markin AV, Bykova TA, et al. The thermodynamic properties of crystalline $Sr_{0.5}Zr_2(PO_4)_3$ phosphate from $T \rightarrow 0$ to 665 K. Rus J Phys Chem. 2007;81:1185–91.
- 8. Pet'kov VI, Markin AV, Schelokov IA, et al. The heat capacity and thermodynamic functions of $\text{Ca}_{0.5}\text{Zr}_2(\text{PO}_4)_3$ crystalline phosphate from $T \rightarrow 0$ to 650 K. Rus J Phys Chem. 2010;84: 541–7.

- Pet'kov VI, Kurazhkovskaya VS, Orlova AI, Spiridonova ML. Synthesis and crystall chemical characteristics of the structure of M_{0.5}Zr₂(PO₄)₃ phosphates. Kristallografiya. 2002;47:802–9.
- Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.
- 11. Hohne GWH, Hemminger WF, Flammersheim HF. Differential scanning calorimetry. Berlin: Springer Verlag; 2003.
- Yakubov TS. About heat capacity of solids having fractal character. Doklady Akad Nauk SSSR. 1990;310:145–9.
- Isotov AD, Shebershneva OV, Gavrichev KS. Fractal model of low-temperature heat capacity. All-Russia conference on thermal analysis and calorimetry. Kazan; 1996. p. 200–202.
- Glushko VP. Thermal constants of substances. Moskow: Nauka; 1965–1982, 1–10.
- Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. NY, USA: Hemisphere Publ. Co; 1989.